Category Archives: recent-publication

Testing the Scenario Hypothesis (2017)

Gong, Min , Robert Lempert, Andrew M Parker, Lauren A. Mayer, Jordan Fischbach, Matthew Sisco, Zhamin Mao, David H. Krantz, and Howard Kunreuther. “Testing the Scenario Hypothesis: An Experimental Comparison of Scenarios and Forecasts for Decision Support in a Complex Decision Environment.” Environmental Modeling and Software 91 (2017): 135-55.

http://www.sciencedirect.com/science/article/pii/S1364815216305060

Decision support tools are known to influence and facilitate decisionmaking through the thoughtful construction of the decision environment. However, little research has empirically evaluated the effects of using scenarios and forecasts. In this research, we asked participants to recommend a fisheries management strategy that achieved multiple objectives in the face of significant uncertainty. A decision support tool with one of two conditions—Scenario or Forecast—encouraged participants to explore a large set of diversified decision options. We found that participants in the two conditions explored the options similarly, but chose differently. Participants in the Scenario Condition chose the strategies that performed well over the full range of uncertainties (robust strategies) significantly more frequently than did those in the Forecast Condition. This difference seems largely to be because participants in the Scenario Condition paid increased attention to worst-case futures. The results offer lessons for designing decision support tools.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Why pay attention to paths in the practice of environmental modelling? (2017)

Lahtinen, T. J., J. H. A. Guillaume, and R. P. Hämäläinen (2017), Why pay attention to paths in the practice of environmental modelling?, Environmental Modelling and Software, 92, 74–81, http://dx.doi.org/10.1016/j.envsoft.2017.02.019

Taking the ‘path perspective’ helps to understand and improve the practice of environmental modelling and decision making. A path is the sequence of steps taken in a modelling project. The problem solving team faces several forks where alternative choices can be made. These choices determine the path, together with the impact of uncertainties and exogenous effects. This paper discusses phenomena that influence the problem solvers’ choices at the forks. Situations are described where it can be desirable to re-direct the path or backtrack on it. Phenomena are identified that can cause the modelling project to get stuck on a poor path. The concept of a path draws attention to the interplay of behavioral phenomena and the sequential nature of modelling processes. This helps understand the overall effect of the behavioral phenomena. A path checklist is developed to help practitioners detect forks and reflect on the path of the modelling project.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Understanding the failure to understand New Product Development failures: Mitigating the uncertainty associated with innovating new products by combining scenario planning and forecasting (2017)

Derbyshire, J. and Giovannetti, E. (2017) Understanding the failure to understand New Product Development failures: Mitigating the uncertainty associated with innovating new products by combining scenario planning and forecasting, Technological Forecasting & Social Change: http://www.sciencedirect.com/science/article/pii/S0040162516302980

In this paper we show that New Product Development (NPD) is subject to fundamental uncertainty that is both epistemic and ontic in nature. We argue that this uncertainty cannot be mitigated using forecasting techniques exclusively, because these are most useful in circumstances characteristic of probabilistic risk, as distinct from non-probabilistic uncertainty. We show that the mitigation of uncertainty in relation to NPD requires techniques able to take account of the socio-economic factors that can combine to cause present assumptions about future demand conditions to be incorrect. This can be achieved through an Intuitive Logics (IL) scenario planning process designed specifically to mitigate uncertainty associated with NPD by incorporating insights from both quantitative modelling alongside consideration of political, social, technological and legal factors, as-well-as stakeholder motivations that are central to successful NPD. In this paper we therefore achieve three objectives: 1) identify the aspects of the current IL process salient to mitigating the uncertainty of NPD; 2) show how advances in diffusion modelling can be used to identify the social-network and contagion effects that lead to a product’s full diffusion; and 3) show how the IL process can be further enhanced to facilitate detailed consideration of the factors enabling and inhibiting initial market-acceptance, and then the forecasted full diffusion of a considered new product. We provide a step-by-step guide to the implementation of this adapted IL scenario planning process designed specifically to mitigate uncertainty in relation to NPD.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change (2017)

Almeida, S., Holcombe, E. A., Pianosi, F. and Wagener, T. (2017). Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change, Nat. Hazards Earth Syst. Sci., 17, 225-241, doi:10.5194/nhess-17-225-2017.

http://www.nat-hazards-earth-syst-sci.net/17/225/2017/

Landslides have large negative economic and societal impacts, including loss of life and damage to infrastructure. Slope stability assessment is a vital tool for landslide risk management, but high levels of uncertainty often challenge its usefulness. Uncertainties are associated with the numerical model used to assess slope stability and its parameters, with the data characterizing the geometric, geotechnic and hydrologic properties of the slope, and with hazard triggers (e.g. rainfall). Uncertainties associated with many of these factors are also likely to be exacerbated further by future climatic and socio-economic changes, such as increased urbanization and resultant land use change. In this study, we illustrate how numerical models can be used to explore the uncertain factors that influence potential future landslide hazard using a bottom-up strategy. Specifically, we link the Combined Hydrology And Stability Model (CHASM) with sensitivity analysis and Classification And Regression Trees (CART) to identify critical thresholds in slope properties and climatic (rainfall) drivers that lead to slope failure. We apply our approach to a slope in the Caribbean, an area that is naturally susceptible to landslides due to a combination of high rainfall rates, steep slopes, and highly weathered residual soils. For this particular slope, we find that uncertainties regarding some slope properties (namely thickness and effective cohesion of topsoil) are as important as the uncertainties related to future rainfall conditions. Furthermore, we show that 89 % of the expected behaviour of the studied slope can be characterized based on only two variables – the ratio of topsoil thickness to cohesion and the ratio of rainfall intensity to duration.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Preparing for disruptions: A diagnostic strategic planning intervention for sustainable development (2017)

Malekpour, S., Brown, R. R., de Haan, F. J., & Wong, T. H. F. (2017). Preparing for disruptions: A diagnostic strategic planning intervention for sustainable development. Cities, 63, 58–69. http://doi.org/10.1016/j.cities.2016.12.016

http://www.sciencedirect.com/science/article/pii/S0264275116301299

Despite the emphasis on sustainable development in some of the contemporary planning and policy rhetoric, we face an implementation deficit in practice. The impediments to the widespread adoption and successful implementation of sustainable infrastructure in cities’ critical sectors—such as water, energy or transport—are varied and complex. Although the scholarship has made some attempts to understand and categorize those impediments, not much has been said about how to identify them in a specific practical context. This study proposes a model for a diagnostic intervention in the ongoing process of strategic infrastructure planning, as a way of revealing context-specific impediments. The diagnostic intervention incorporates an explicit and reflexive consideration of short-term barriers and long-term disruptors into the strategic planning process, and assists with drafting the required coping strategies. The intervention has been tested in water infrastructure planning for one of the world’s largest urban renewal areas in Melbourne, Australia. This trial application provided promising outcomes for addressing the implementation deficit of sustainable development: it created a platform for various stakeholder groups to engage in explicit discussions on their confronted problems, which often have trans-organizational causes and impacts; it enabled reflexivity within the ongoing planning process; and, it helped to consider a large portfolio of future uncertainties to provide an enabling condition for more robust decisions to be made. Moreover, the trialed intervention provided empirical evidence in support of the scholarly discourse which contends that sustainable infrastructure delivery is not only about the development of technical solutions, but is also about the development of processes and tools that support the widespread adoption and successful implementation of those solutions in the face of wide-ranging impediments.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Designing monitoring arrangements for collaborative learning about adaptation pathways (2017)

Hermans, Leon M., Marjolijn Haasnoot, Judith ter Maat, Jan H. Kwakkel. (2017). Designing monitoring arrangements for collaborative learning about adaptation pathways. Environmental Science & Policy 69: 29-38. DOI: 10.1016/j.envsci.2016.12.005 . https://authors.elsevier.com/a/1UFzx5Ce0rOGPN

Adaptation pathways approaches support long-term planning under uncertainty. The use of adaptation pathways implies a systematic monitoring effort to inform future adaptation decisions. Such monitoring should feed into a long-term collaborative learning process between multiple actors at various levels. This raises questions about who should monitor what, when and for whom. We formulate an approach that helps to address these questions, developed around the conceptual core offered by adaptive policy pathways methods and their notion of signposts and triggers. This is embedded in a wider approach that revisits the critical assumptions in underlying basic policies, looks forward to future adaptation decisions, and incorporates reciprocity in the organization of monitoring and evaluation. The usefulness and practical feasibility of the approach is studied for a case of the Delta Programme in the Netherlands, which incorporated adaptation pathways in its planning approach called adaptive delta management. The case results suggest that our approach adds value to existing monitoring practices. They further show that different types of signposts exist. Technical signposts, in particular, need to be distinguished from political ones, and require different learning processes with different types of actors.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

What it took to catalyse uptake of dynamic adaptive pathways planning to address climate change uncertainty (2016)

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Barriers and opportunities for robust decision making approaches to support climate change adaptation in the developing world (2016)

Bhave, A. G., Conway, D., Dessai, S., & Stainforth, D. A. (2016). Barriers and opportunities for robust decision making approaches to support climate change adaptation in the developing world. Climate Risk Management, 14, 1-10.  URL: http://www.sciencedirect.com/science/article/pii/S2212096316300626

Climate change adaptation is unavoidable, particularly in developing countries where the adaptation deficit is often larger than in developed countries. Robust Decision Making (RDM) approaches are considered useful for supporting adaptation decision making, yet case study applications in developing countries are rare. This review paper examines the potential to expand the geographical and sectoral foci of RDM as part of the repertoire of approaches to support adaptation. We review adaptation decision problems hitherto relatively unexplored, for which RDM approaches may have value. We discuss the strengths and weaknesses of different approaches, suggest potential sectors for application and comment on future directions. We identify that data requirements, lack of examples of RDM in actual decision-making, limited applicability for surprise events, and resource constraints are likely to constrain successful application of RDM approaches in developing countries. We discuss opportunities for RDM approaches to address decision problems associated with urban socio-environmental and water-energy-food nexus issues, forest resources management, disaster risk management and conservation management issues. We examine potential entry points for RDM approaches through Environmental Impact Assessments and Strategic Environmental Assessments, which are relatively well established in decision making processes in many developing countries. We conclude that despite some barriers, and with modification, RDM approaches show potential for wider application in developing country contexts.

 

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

A critical review of decision support systems for water treatment: Making the case for incorporating climate change and climate extremes (2016)

Raseman, WJ; Kasprzyk, JR; Rosario-Ortiz, FL; Stewart, JR; Livneh, B “A critical review of decision support systems for water treatment: Making the case for incorporating climate change and climate extremes” Environmental Science: Water Research and Technology, In Press. doi:/10.1039/C6EW00121A

Abstract: Water treatment plants (WTPs) are tasked with providing safe potable water to consumers. However, WTPs face numerous challenges, including changes in source water quality and quantity, financial challenges related to operations and upgrades, and stringent water quality regulations. These aforementioned challenges may be exacerbated by climate change in the form of long-term climatic perturbations and the increasing frequency and intensity of extreme weather events. To help WTPs overcome these issues, decision support systems (DSSs), which are used to aid and enhance the quality and consistency of decision-making, have been developed. This paper reviews the scientific literature on the development and application of DSSs for water treatment, including physically-based models, statistical models, and artificial intelligence techniques, and suggests future directions in the field. We first set the context of how water quality is impacted by climate change and extreme weather events. We then provide a comprehensive review of DSSs and conclude by offering a series of recommendations for future DSS efforts for WTPs, suggesting that these tools should (1) more accurately reflect the practical needs of WTPs, (2) represent the tradeoffs between the multiple competing objectives inherent to water treatment, (3) explicitly handle uncertainty to better inform decision makers, (4) incorporate nonstationarity, especially with regard to extreme weather events and climate change for long-term planning, and (5) use standardized terminology to accelerate the dissemination of knowledge in the field.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication

Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways (2016)

Zeff, H.B., Herman, J., Reed, P.M., and Characklis, G., “Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways.”, Water Resources Research, DOI: 10.1002/2016WR018771.

http://onlinelibrary.wiley.com/doi/10.1002/2016WR018771/abstract

A considerable fraction of urban water supply capacity serves primarily as a hedge against drought.  Water utilities can reduce their dependence on firm capacity and forestall the development of new supplies using short-term drought management actions, such as conservation and transfers.  Nevertheless, new supplies will often be needed, especially as demands rise due to population growth and economic development.  Planning decisions regarding when and how to integrate new supply projects are fundamentally shaped by the way in which short-term adaptive drought management strategies are employed. To date, the challenges posed by long-term infrastructure sequencing and adaptive short-term drought management are treated independently, neglecting important feedbacks between planning and management actions.  This work contributes a risk-based framework that uses continuously updating risk-of-failure (ROF) triggers to capture the feedbacks between short term drought management actions (e.g., conservation and water transfers) and the selection and sequencing of a set of regional supply infrastructure options over the long term.  Probabilistic regional water supply pathways are discovered for four water utilities in the ‘Research Triangle’ region of North Carolina.  Furthermore, this study distinguishes the status-quo planning path of independent action (encompassing utility-specific conservation and new supply infrastructure only) from two cooperative formulations: ‘weak’ cooperation, which combines utility-specific conservation and infrastructure development with regional transfers, and ‘strong’ cooperation, which also includes jointly developed regional infrastructure to support transfers.  Results suggest that strong cooperation aids utilities in meeting their individual objectives at substantially lower costs and with less overall development.  These benefits demonstrate how an adaptive, rule-based decision framework can coordinate integrated solutions that would not be identified using more traditional optimization methods.

Dare to share!Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInPin on PinterestEmail this to someonePrint this page

Leave a Comment

Filed under publication, recent-publication