Project Platypus
A Collection of Libraries for Optimization, Data Analysis, and Decision Making
Developed by David Hadka

https://github.com/Project-Platypus

Julianne Quinn
jdq8@cornell.edu
What is Project Platypus?

Python extension of the R package:

OpenMORDM
Multiobjective Robust Decision Making in R
http://github.com/OpenMORDM

Rhodium
Python tool for Robust Decision Making, built off of the EMA workbench

PRIM
Stand-alone Python implementation of the Patient Rule Induction Method

Platypus
Python library of Multi-Objective Evolutionary Algorithms (MOEAs)

J3
Java platform for visualizing and analyzing multi-objective trade-offs

https://github.com/Project-Platypus
What do robustness analyses have in common?

Evaluate alternatives in multiple states of the world...

Quantify robustness measures and determine sensitive uncertainties

Slide credit: Jon Herman
Given/assumed
(a priori)

Discovered via modeling
(a posteriori)
Taxonomy of Robustness Frameworks

I. Alternatives
 - Prespecified
 - Search
 - Optimization
 - Design of experiments
 - Single or Multi-Objective
 - Well-characterized or deep uncertainty

II. States of the World
 - Key Factors Assumed
 - Prespecified Scenarios
 - Key Factors Discovered
 - Design of experiments
 - Sampling outward from expected state, or global?
 - Well-characterized or deep uncertainty?

III. Robustness Measures
 - Expected Value
 - Satisficing
 - Regret
 - Domain Criterion or Uncertainty Horizon?
 - Univariate or Multivariate Thresholds?
 - Deviation from Best or Baseline?

IV. Robustness Controls
 - Identify most sensitive factors
 - No sensitivity analysis
 - Ranges
 - Ranking
 - Local OAT
Platypus
Evolutionary Algorithms / Optimization

Implementation of popular single and multi-objective EAs:
- NSGA-II, NSGA-III, MOEA/D, IBEA, ε-MOEA, SPEA2, GDE3, OMOPSO, SMPSO, CMA-ES, ε-NSGA-II
- Borg (available separately)

Supports parallelization
- Threads
- MPI

Experimentation framework:
- Execute many algorithms / problems / parameters
- Parallelization support

from platypus import NSGAIII, DTLZ2

problem = DTLZ2(3)
algorithm = NSGAIII(problem, divisions_outer=12)
algorithm.run(10000)
print(algorithm.result)
High Dimensional Visualizations in Java

Widget-based viewer
- 2D, 3D scatter plots
- Parallel coordinates
- Annotations, brushing
- Animations (New)
- Saving/loading (New)

Cross Platform
- Installers for Windows, Mac, Linux

Small Footprint (10 MBs)

Plugin API for adding new widgets
Optimizing to a stationary future: too narrow?

Which solutions are robust? How to decide?

Sample deeply uncertain states of the world (inflows, demand, etc.)
Taxonomy of Robustness Frameworks

I. Alternatives
- Prespecified
- Search
- Optimization
- Design of experiments
- Single or Multi-Objective?
- Well-characterized or deep uncertainty?

II. States of the World
- Key Factors Assumed
- Key Factors Discovered
- Prespecified Scenarios
- Design of experiments
- Sampling outward from expected state, or global?
- Well-characterized or deep uncertainty?

III. Robustness Measures
- Expected Value
- Satisficing
- Regret
- Domain Criterion or Uncertainty Horizon?
- Univariate or Multivariate Thresholds?
- Deviation from Best or Baseline?

IV. Robustness Controls
- Identify most sensitive factors
- No sensitivity analysis
- Ranges
- Ranking
- Local OAT
Taxonomy of Robustness Frameworks

I ALTERNATIVES

Prespecified Search

Optimization Design of experiments

Single or Multi-Objective? Well-characterized or deep uncertainty?

II STATES OF THE WORLD

Key Factors Assumed Key Factors Discovered

Prespecified Scenarios Design of experiments

Sampling outward from expected state, or global? Well-characterized or deep uncertainty?

III ROBUSTNESS MEASURES

Expected Value Satisficing Regret

Domain Criterion or Uncertainty Horizon? Univariate or Multivariate Thresholds? Deviation from Best or Baseline?

IV ROBUSTNESS CONTROLS

Identify most sensitive factors No sensitivity analysis

Ranges Ranking Local OAT
Rhodium
Robust Decision Making

Decision support framework
- Based on XLRM (Rand Corporation)
- Model-based, declarative design

Acts as the “glue” between your model and analysis codes
- Connects to models in C, C++, Fortran, Excel, R, Python, ...
- Integrates with Pandas, Numpy, Platypus, PRIM, SALib, Scipy, ...

```python
model = Model(lake_problem)
model.parameters = [Parameter("pollution_limit"),
                    Parameter("b"),
                    Parameter("q"),
                    Parameter("mean"),
                    Parameter("stdev"),
                    Parameter("delta"))
model.responses = [Response("max_P", MINIMIZE),
                  Response("utility", MAXIMIZE),
                  Response("inertia", MAXIMIZE),
                  Response("reliability", MAXIMIZE)]
model.constraints = [Constraint("reliability >= 0.95 and utility >= 0.25")]
model.levers = [RealLever("pollution_limit", 0.0, 0.1, length=100)]
model.uncertainties = [UniformUncertainty("b", 0.1, 0.45),
                        UniformUncertainty("q", 2.0, 4.5),
                        UniformUncertainty("mean", 0.01, 0.05),
                        UniformUncertainty("stdev", 0.001, 0.005),
                        UniformUncertainty("delta", 0.93, 0.99)]
```
Taxonomy of Robustness Frameworks

I. ALTERNATIVES
 - Prespecified
 - Search
 - Optimization
 - Design of experiments
 - Single or Multi-Objective?
 - Well-characterized or deep uncertainty?

II. STATES OF THE WORLD
 - Key Factors Assumed
 - Key Factors Discovered
 - Prespecified Scenarios
 - Design of experiments
 - Sampling outward from expected state, or global?
 - Well-characterized or deep uncertainty?

III. ROBUSTNESS MEASURES
 - Expected Value
 - Satisficing
 - Regret
 - Domain Criterion or Uncertainty Horizon?
 - Univariate or Multivariate Thresholds?
 - Deviation from Best or Baseline?

IV. ROBUSTNESS CONTROLS
 - Identify most sensitive factors
 - No sensitivity analysis
 - Ranges
 - Ranking
 - Local OAT
PRIM
Patient Rule Induction Method

For scenario discovery

- Identify regions, aka "boxes", containing cases of interest
- Simple rules (min/max bounds)
- Run interactively using Matplotlib or share static figures in IPython Notebooks

```python
from prim import Prim
p = Prim(df, response, threshold=0.5, threshold_type=">")
box = p.find_box()
box.show_tradeoff()
```

http://localhost:8890/notebooks/Desktop/Project-Platypus/Rhodium/Rhodium-DPS-Lake.ipynb#Robustness-Analysis
Many-Objective Robust Decision Making

I. ALTERNATIVES

- Prespecified
 - Optimization
 - Single or Multi-Objective
 - Search
 - Design of experiments

II. STATES OF THE WORLD

- Key Factors Assumed
 - Prespecified Scenarios
 - Sampling outward from expected state, or global?
- Key Factors Discovered
 - Design of experiments
 - Well-characterized or deep uncertainty?

III. ROBUSTNESS MEASURES

- Expected Value
- Satisficing
 - Domain Criterion or Uncertainty Horizon?
 - Univariate or Multivariate Thresholds?
- Regret
 - Deviation from Best or Baseline?

IV. ROBUSTNESS CONTROLS

- Identify most sensitive factors
 - Range
 - Ranking
- No sensitivity analysis
- Local OAT
Project Platypus
A Collection of Libraries for Optimization, Data Analysis, and Decision Making

Get it today: https://github.com/Project-Platypus