

Engineering Options Analysis for Infrastructure Decision-Making

Richard de Neufville Professor of Engineering Systems

MIT Institute for Data, Systems, and Society

Texts on Flexibility in Design

Preliminary: Options and Risk

- Option in this context:
- "Right but not obligation to do something"
 - Technical Meaning not "Alternative"
 - 'Insurance' a "put" to mitigate bad outcome
 - A "call" to take advantage of opportunities,
- Uncertainty ≠ Risk, bad outcomes!
 - Often means opportunities!!
 - START-UPS, NEW TECHNOLOGIES
 - UNEXPECTED FAVORABLE GROWTH...

Examples of Flexibility as "options = right but not obligation" to change or adapt:

- Spare tire for automobile (a "put")
- Ports on laptop computers (a "call")

Many infrastructure examples...

Expandable Dam

File:Ross Dam USACE 20031022.jpg

From Wikipedia, the free encyclopedia

Ross Hydropower Dam, Washington State, USA

Designed so it could be made 42 m higher

HCSC Building in Chicago

Vertical Expansion of Health Care Service Corporation Building, Chicago. Phase 1 (left) and Phase 2 (right) in center of image.

Source: Goettsch Partners, 2008 and Pearson and Wittels, 2008.

Engineering Options Analysis

- Flexibility in Design is the Objective ability to adapt infrastructure to events Which Options are Desirable?
- Engineering Options Analysis (EOA) as Means to explore this issue
- 3. EOA not same as Financial Real Options
- 4. Example: LNG Plant in Australia

Engineering Options Analysis Steps

- **1. Recognition of Uncertainty** ... and its general characterization
- **2. Simulation** of Performance for Range of Scenarios => Distributions of Performance
- **3. Evaluation**... necessarily multi-dimensional, one number not enough to describe a distribution
- 4. Result: **Strategy Guidance** about which Planning and Design options desirable

Recognition of Uncertainty

- Best estimates of established trends and procedures – what is the record? Error rate? Standard deviation?
- Judgment about important, possible but unprecedented scenarios. For example, new environmental regulations, technological change, mergers of competitors, etc.

Evaluation

- Analysis results are distributions
 - This is as it should be; if future is a distribution, results must be also
- Evaluation must be multi-dimensional
 - Because several numbers needed to characterize distributions
- Multi-dimensional metrics
 - Average expectation
 - Extremes such as P_5 , P_{95}
 - Others: Initial Capex (capital expenditure)

Engineering vs. Real Options Analysis

Characteristics		Engineering Options	Financial Real Options	
Analysis Basis		Simulation	Optimization	
Options	Number	Many	1	
Uncertainty	Distribution	Any	Random Walk, etc.	
	Assumptions	Can vary over time	Past defines future	
Quantitative	Types	Distributions	1: Price	
Results	Dimensions	Many	1	
Qualitative	D - Makers	Can choose	No choice	
Results	Guidance	Strategy	Buy or not	

Example: LNG Plant in Australia

LNG system: from Massive Fixed to Flexible via Timing, Size, and Location

Flexible modular design outperforms fixed design: less downside, more upside, less initial Capex

Optimum fixed design (75 tpd) and flexible modular designs

(no learning) 100% 14.27 **Cumulative density function** 90% -Fixed design 80% ENPV= -Flexible design no move 70% -Flexible design with move 60% 50% 23.29 40% ENPV= 20.69 ENPV= 30% 20% 10% 0% -10 50 -30 -20 0 10 20 30 40 60

NPV (\$ millions)

	El	Improvement (%)			
Criterion	Optimum fixed	Flexible	Flexible	Flexible	Flexible
	design	no move	with move	no move	with move
ENPV	14.27	20.69	23.29	45	63
$VaR_{10\%}$	1.82	5.40	3.74	197	105
VaG _{90%}	20.46	34.54	45.78	69	124

Multi-criteria decision-making table

Flexibility Value = max[0, (ENPV of flexible design) – (ENPV of fixed design)]

Criterion	Fixed	No move	Move	Value of	Best
	design	option	option	flexibility	design
ENPV	14.27	36.93	43.17	28.80	Move
VaR, 10%	1.82	10.82	11.06	9.24	Move
VaG, 90%	20.46	63.17	80.09	59.63	Move
STD	8.78	18.91	25.31	0.00	Fixed
Capex	60.44	27.50	27.50	32.94	Flexible

Value of flexibility sensitivity to economies of scale and learning rates

Engineering Options Analysis => Strategy Guidance

- Indicates good first move (smaller design)
- Enables future flexible moves
 - Timing, Size, Location of expansion, as desirable
 - Takes effort to create option (ports on computers)
- Does not require precise numbers

 Future is uncertain, Forecasts 'always' wrong
- Efficient, automated computation process

Comparable to playing expert chess – Consider range of moves, only commit to first

