A generalized many-objective optimization approach for scenario discovery

dr.ir. Jan Kwakkel

outcome of interest

uncertainty 1

time

Scenario discovery is a many objective optimization problem

maximize I	$F(l) = (f_{coverage}, f_{density}, f_{interpretability})$		
Coverage	out of all the cases of interest, how many are in the the box?		
Density	of all the cases in the box, how many are of interest?		
Interpretability	number of restricted dimensions note: assumes orthogonal subspaces		

Yet we solve it using mono-objective rule induction algorithms

Patient Rule Induction Method (PRIM) Ienient hill climber for maximizing density coverage and interpretability through post processing a-posteriori selection of preferred trade-off

Classification and Regression Trees (CART) greedy minimization of Gini impurity coverage and interpretability through post processing

trade-off space not fully explored

trade-off space not fully explored local versus global optimum

Drawbacks

trade-off space not fully explored local versus global optimum

PRIM has a tendency to over fitting

	Reproduce Reproduce	
	coverage	density
Biomass backstop price	70	100
Total biomass	70	90
Cellulosic yield	60	90
Feedstock distribution	60	80
Electricity coproduction	60	80
Cellulosic cost	50	80
Oil elasticity	50	80
Demand elasticity	50	80
oil supply shift	50	80

Improving usage of PRIM

Map trade-off space in more detail

run PRIM using subsets of the uncertain factors \rightarrow 1, 2, 3, ..., n combinations of singificant uncertain factors merge results runs into a single set of results using non dominated sort

Address over fitting

quasi-p values (Bryant & Lempert 2010), one sided binomial test, for each restricted dimension remove any candidate box that has non-significant quasi-p values

Solving it using a Many-Objective Evolutionary Algorithm

ε-NSGAII

Initialization

real valued: truncated exponential distribution integer and categorical valued: Boltzmann distribution limited subset of uncertain factors

Evolution

GeneAS (Deb, 1999) for handling heterogeneously typed decision variables Mutation stays quite close to original value

Constraints

quasi p-values used as constraints to avoid over fitting

Case 2: Hamarat et al (2013) dataset

Case 2: Hamarat et al (2013) dataset

Case 2: Hamarat et al (2013) dataset

Conclusions

Scenario discovery is a many-objective optimization problem

expandable with additional objectives (e.g. consistency)

Solving the problem using a MOEA

viable

dominates (slightly) results from improved PRIM based approach

computationally expensive

Future work: genetic programming approach

generating non orthogonal subspaces Finding multiple subspaces in one go

