Avoiding fisheries collapse: Can robustness frameworks capture and navigate uncertain harvest trade-offs?

Antonia Hadjimichael Patrick Reed Julianne Quinn

DMDU 2018 ah986@cornell.edu

DMDU 2018| ah986@cornell.edu

Quantify and analyze tradeoffs of managing a simple fishery with a predator-prey relationship

Assess the impacts of **deeply uncertain** parameters and relationships on system dynamics and tradeoffs

Explore formulations of harvesting **policies** to avoid potential **catastrophic consequences**

Northatlantic cod fishery collapse

Source: Millennium Ecosystem Assessment

Northern Benguela ecosystem

Combination of **overfishing** and **changing environmental conditions**

Collapse of predator populations

6 @cornell.edu

ltlantic Ocean

The classic system

x: prey
$$\frac{dx}{dt} = bx - axy$$

y: predator
$$\frac{dy}{dt} = caxy - dy$$

- *b*: prey growth rate
- d: predator death rate
- *c*: rate with which consumed prey is converted to predator
- a: rate with which prey is killed by a predator per unit of time

$$f(x) = bx\left(1 - \frac{x}{K}\right)$$

Replaced with:

Density-dependent function (logistic model)

K: prey carrying capacity given its environmental conditions

Trophic function

Most important and debated element

$$\frac{dx}{dt} = bx - axy$$
$$\frac{dy}{dt} = caxy - dy$$

$$g(x) = \frac{ax}{1 + ahx}$$

Replaced with: Holling's generalized functional response h is the handling time

J. theor. Biol. (1989) 139, 311-326

Coupling in Predator-Prey Dynamics: Ratio-Dependence

ROGER ARDITIT AND LEV R. GINZBURG

† Institut de Zoologie et d'Écologie Animale, Université de Lausanne, CH-1015 Lausanne, Switzerland and ‡ Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794-5245, U.S.A.

(Received 14 June 1988, and accepted in revised form 27 February 1989)

In continuous-time predator-prey models, the per capita rate of consumption (the functional response or "trophic function") is usually interpreted as a behavioral and the second second

Arditi and Ginzburg (1989); J. Theor. Biol.

 $\frac{dx}{dt} = f(x) - g(x)y$ $\frac{dy}{dt} = cg(x)y - dy$

Independent of predator density

Arditi & Ginzburg: Ratio-dependent trophic function Available prey shared among predators

Note: a is defined as the rate with which prey is killed by a predator per unit of time $(1/(mass \cdot time))$, α is defined as the rate at which the prey is available to the predator (1/time).

 $g(x) = \frac{ax}{1 + ahx}$

Modeling predator-prey systems

Trophic function

Abrams & Ginzburg (2000); Trends Ecol. Evol.

Lotka-Volterra & Arditi-Ginzurg models extremes of a spectrum of predator dependence

What does this uncertainty in interference imply for the system?

 $g(x) = \frac{1}{1 + ahx} \leftarrow g\left(\frac{1}{y^m}\right) = \frac{1}{y^m + ahx} \rightarrow g\left(\frac{1}{y}\right) = \frac{1}{y + ahx}$

m: predator interference parameter, on a sliding scale of 0 to 1

Classic ratio-dependent model

Classic ratio-dependent model

System dynamics

Predator-dependent model

DMDU 2018 | ah986@cornell.edu

$$\frac{dx}{dt} = bx\left(1 - \frac{x}{K}\right) - \frac{\alpha xy}{y^m + \alpha hx} - \boxed{z \cdot x}$$

$$\frac{dy}{dt} = \frac{c\alpha xy}{y^m + \alpha hx} - dy$$
Harvestingfieffiort

$$x_{t+1} = x_t + bx_t \left(1 - \frac{x_t}{K}\right) - \frac{\alpha x_t y_t}{y_t^m + \alpha h x_t} - z_t \cdot x_t - \varepsilon_x$$

$$y_{t+1} = y_t + \frac{c\alpha x_t y_t}{y_t^m + \alpha h x_t} - dy_t - \varepsilon_y$$
Set `@fnVidenisiontal`
describeblasticityolicy
 $\varepsilon_i \sim L. N(0, \sigma_i)$
Parameter α b c d h K m $\sigma_x \sigma_y$
Value 0.005 0.5 0.1 0.1 2000 0.7 0.004 0.004

Quantify and analyze tradeoffs of managing a simple fishery with a predator-prey relationship

Assess the impacts of **deeply uncertain** parameters and relationships on system dynamics and tradeoffs

Explore formulations of harvesting **policies** to avoid potential **catastrophic consequences**

Four objectives and a constraint

Averaged over 100 realizations of well-characterized environmental stochasticity

DMDU 2018 | ah986@cornell.edu

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

Parallel axis

DMDU 2018 | ah986@cornell.edu

Identified tradeoffs

Parallel axis

DMDU 2018 | ah986@cornell.edu

20

Identified tradeoffs

Parallel axis

DMDU 2018| ah986@cornell.edu

What do the tradeoffs look like in other SOW?

22

23

What do the tradeoffs look like in other SOW?

What do the tradeoffs look like in other SOW?

What happens in other areas of the parametric space?

What happens in other areas of the parametric space?

Latin Hypercube Sampling: 4,000 combinations

How is performance affected when found in any of these SOW?

K	TOO	2000	5000
m	0.1	0.7	1.5
	0.001	0.004	1
σ _y	0.001	0.004	1

How is performance affected when in other SOW?

How is performance affected when in other SOW?

Could the cause for collapse be informed by the dynamics?

$$\frac{dx}{dt} = bx\left(1 - \frac{x}{K}\right) - \frac{\alpha xy}{y^m + \alpha hx} - z \cdot x$$
$$\frac{dy}{dt} = \frac{c\alpha xy}{y^m + \alpha hx} - dy$$

Derived inequality for stability

$$\alpha(hK)^{1-m} < (b-z)^m$$

How is performance affected when in other SOW?

DMDU 2018 | ah986@cornell.edu

How is performance affected when in other SOW?

Quantify and analyze tradeoffs of managing a simple fishery with a predator-prey relationship

Assess the impacts of **deeply uncertain** parameters and relationships on system dynamics and tradeoffs

Explore formulations of harvesting **policies** to avoid potential **catastrophic consequences**

Robustness across criteria

Net Present Value (max)

Total discounted profits > 1500

Prey deficit (min) Deficit from population capacity < 0.2

Duration of consecutive low harvest (min) Duration of harvest below 5% of population < 5

Worst harvest instance (max) 1st percentile of harvest > 50

Avoid predator collapse Duration of population collapse < 1

DMDU 2018 | ah986@cornell.edu

40

41

Key Points and Implications

Generalized predator-prey system with harvest of prey and derived the isoclines, equilibria, and conditions for stability

Significant impacts of deep uncertainty; distinct basins of attraction can be present and shift even with marginal changes

Significant differences in system dynamics and equilibria as a result of human preference and action

Robustness through compromise as a driver for harvest can help navigate deep uncertainties in parameters and relationships

Questions?

DMDU 2018 | ah986@cornell.edu

21 December 2018

Appendix

Regrets

Regrets

DMDU 2018| ah986@cornell.edu

48

Collapse in freshwater fisheries

Great Slave Lake (Canada): Trout collapse due to overexploitation

Volga River (Russia): Nelma, beluga, herring **collapse** due to **dam construction** (spawning ground loss) and **illegal fishing**

Lake Chapala (Mexico): Bagre, Popoche, Pescado blanco collapse due to overfishing and habitat loss from agricultural activities

49

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

Gaussian radial basis functions (RBFs)

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

DMDU 2018 | ah986@cornell.edu

51

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

Direct Policy Search:

Optimize a policy describing z_{t+1} as a function of prey abundance, x_t

Giuliani et al. (2016); <u>https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570</u>