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Multi-Objective Robust Decision Making for fisheries

@ Quantify and analyze tradeoffs of managing a
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain
@ parameters and relationships on system
dynamics and tradeoffs

@ Explore formulations of harvesting policies to
avoid potential catastrophic consequences
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Northatlantic cod fishery collapse
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Northern Benguela ecosystem

Imprudent human action and
poor understanding of system
interactions can have
catastrophic consequences!




Modeling predator-prey systems The classic system

KEY
== Snowshoe hare
m— |ynx

Lotka-Volterra equations

EIZ()
dx
X: prey EE— bx _ ax éwm
dy
y: predator It = caxy — dy

b: prey growth rate

d: predator death rate

c: rate with which consumed prey Is converted to predator

a: rate with which prey is killed by a predator per unit of time
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Modeling predator-prey systems Prey growth

Exponential growth in the

/ absence of a predator
dx

I bx|— axy
dy B P
i caxy — dy
Replaced with:

Density-dependent function (logistic model)
K: prey carrying capacity given its environmental conditions
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Modeling predator-prey systems Trophic function

Trophic function
Most important and debated element

— = bhx Hax

7~

axy — dy

ax The Canadian Entomologist

Vol. XCI “Ottawa, Canada, July 1959 Neo. 7

) :' — - " 1959
g Some Characteristics of Simple Types of Predation
and Parasitism’
By C. S. Hotuve
Forest Tnsect Laboratory, Seult See, Marie, Ontacio

In an earlier study (Holling, 1959) the basic and subsidiary components of
predation were demonstrated in a predator-prey situation involving the predation
of sawfly cocoons by small mammals. One of the basic components, termed the
functional response, was a response of the consumption of prey by individual
predators to changes of prey density, and it appeared to be at least theoretically
mnportant in population regulation.  Because of this importance the fu
response has been further examined in an attempt to explain its characreri

The analytical approach adopted required a pred v situation in which

- . the functional respanse was basically simple and from which more complex types

eplaced wit conld e deveerid A cxplmion of e bl rsponte woud fhca be

. first step cowards an explanation of more complex ones, such as those already

demonstrated by the small mammals. Artificial predator-prey situations were

. ) . . devised which were found to meet these requirements, and the mathcmatical

equation derived to explain the basic response also appeared to describe the

olling s generalized runctional response ublihcd drs concermng th e of bk denaiy ojan th number of hoss

attacked by insect parasices.

h IS the handling tlme Holling (1959); Can. Entomol.
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Modeling predator-prey systems

Trophic function

J. theor. Biol. (1989) 139, 311-326

Coupling in P Prey Dy ics: Ratio-D

RoGer Aspimit anp Lev R. GinzsurcE
t Instirut de Zoologie et d°Ecologie Animale, Université de Lausanne, CH-
1015 Lausanne, Switzerland and § Department of Ecology and Evolution,
State University of New York at Stony Brook, Stony Brook, New York
11794-5245, U.S.A.

(Received 14 June 1988, and accepted in revised form 27 February 198%)

In continuous-time predator-prey models, u. pﬂ'mp} rate of consumption (the
funcciondl response or “trophic function”) is usually i.llerpmndnaben.lvml\
nier prey at random

£nd that the iraphic function depends on prey abundance only. We argue that this
roach ays appropriate. The trophic function must be con:
population dynamics at which the models nperlle% on
e h

rey o pres nces. Several e and luboraiory observations support this

hypothesis. We compare the consequences of the two types of dependence with

respedt 1o the dynamical propenties of the models and th responss of papalation
primal

ation
respond in ratio-dependent models. This result is generalized (0 food chains. We
suggest that the ratio-dependent form of the trophic function is a simple way of

accounting foe masy types of heierogeacicy that occurin large scale natural systems,
while the prey-dependent form may be more appropriate for homogeneous systems
like chemostats.

Arditi and Ginzburg (1989); J. Theor. Biol.

Independent of
predator density

ot =S gy

cg(x)y —dy

dt

X
- X a y ax
Arditi & Ginzburg: —_ | — —

Ratio-dependent trophic function g y N 1 + af B y + ahx

Available prey shared among predators

Note: a is defined as the rate with which prey is killed by a predator per unit of time
(1/(mass-time)), o is defined as the rate at which the prey is available to the predator (1/time).
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Modeling predator-prey systems Trophic function

o -
N = = =
¥ o o op L 4©
1741 N
P o 1
J. theor. Biol. (1989) 139, 311-326 o N OP 0N
- : The i i tests for ratio-dependence 2 & & S fatiy "
Coupling in Predator—Prey Dynamics: Ratio-Dependence interpretation of tests f epe Scale im i in 3
RoGex Axpimit aND Lev R. Ginzsurat .0, B and .5, Carncy, Dt of St ant Madoling Scoms, U, f Souhetrls,Glagow reply to Ruxton and Gurney

+ Institut de Zoologie et d*Ecologie Animale, Université de Lausanne, CH-

1015 Lausanne, Switzerland and + Depariment of Ecology and Evolution,

State University of New York at Stony Brook, Stony Brook, New York
11794.5245, USA.

(Received 14 June 1988, and accepted in revised form 27 February 1989)

oo A, 1. of ey and bl B, U of Lo, O 015 L, St~
Lov . Gl Dt of Reogy end s St . of New Yok, Sy Bk, N 114,345, USA. -
frestesy Swcerand

e s s v S i o i el et e ey
functional esponse ot "Mk function”! )n usually interpreted as a behavioral iyt etk BeAtgioth, Rkt g e
e e e T T i
— i i

£nd k1 rophie fancion dopumds om prey Sowedme ouhy. Wo arpue that this

approach is not always appropriate. The trophic function must be considered or

e show che scele of popuition dysamice l which the madeh oparse—sct on

the fast We propose

differ, t s reasomable (o0 assume that the Imph:fummtkpend s on the raio of
Several

A ey Ruxton & Gurney (1992); Oikos Arditi et -
S The nature of predation: prey

suggest that the ratio-dependent form of the trophic function is a simp

s “This idea would set predator-p,  dependent, ratio dependent or neither?
Arditi & Ginzburg (1989); J. 1
- Abrams (1 994) Peter A. Abrams and Lev R. Ginzburg

To describe a predator-prey relationship, it is necessary to specify the rate of prey

consumption by an average predator. This functional response largely determines

dynamic stability, responses to environmental influences and the nature of indirect
effects in the food web containing the predator-prey pair. Nevertheless, measurements
of functional responses in nature are quite rare. Recently, much work has been devoted
to comparing two idealized forms of the functional response: prey dependent and ratio
dependent. Although we agree that predator abundance often affects the consumption
rate of individual predators, this phenomenon requires more attention. Disagreement
remains over which of the two idealized responses serves as a better starting point in

building models when data on predator dependence are absent.

wa PETER A ABRAMS Ecology, Wl. 75, No. §

EBR R e

THE FALLACIES OF “RATIO-DEPENDENT” PREDATION!

Sarnelle (1994); Ecology

Peter Abrams is at the Dept of Zoology, Ureversity of Toronto, 25 Harbord Street, Toronto, Ontario,
Canada MS5S 3G5 (sbrams@z00.utoronto.ca); and Lev Ginzburg is at the Dept of Ecology and Evoluton,
State Urwversity of New York at Stony Brook, Stony Brook, NY 11794-5245, USA (lev@ramas.com)

Abrams & Ginzburg (2000); Trends Ecol. Evol.
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Modeling predator-prey systems

What does this uncertainty in
interference imply for the system!?
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System dynamics

Classic ratio-dependent model

Predator abundance
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System dynamlcs Classic ratio-dependent model
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System dynam ICS Predator-dependent model

Even for unharvested systems
uncertainty implies significant
differences in dynamics!
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HarveStmg the system Continuous-time model

dt K

m 4+ qhx
dy  caxy \

= —d
dt  y™ + ahx Y Harvestedfedfort

@:bx(1—f)_y Y 7tx
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HarveStmg the System Discrete-time model

—|Z#* X+ — |E

CAXtYt d
= —dy; —[e
Yerr = Ve ¥ i na, — WVt Ty w

Set dinVidenisiental
describelastiaiyolicy
g~L.N(0,a;)

Xt AXt Yt
X = X+ + bx (1 — —) —
t+1 t t v.™ + ahx,

Parameter o b ¢ d h K m o o
Value 0.005 0.5 0.5 0.1 0.1 2000 0.7 0.004 0.004
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Multi-Objective Robust Decision Making for fisheries

@ Quantify and analyze tradeoffs of managing a
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain
@ parameters and relationships on system
dynamics and tradeoffs

@ Explore formulations of harvesting policies to
avoid potential catastrophic consequences
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Four objectives and a constraint

Averaged over 100 realizations of well-characterized environmental stochasticity

l \

e T U
— e’ — e — —
-— ' A
‘- e’ e’ A C tive |
) e > onsecutive low
harvest duration
Net Present Value o
, _ -— o - Harvest below 5%
Total discounted profits .
.. of population

e o

R A |

Prey deficit Worst harvest instance
15t percentile of harvest

Deficit from

: . @&
population capacity ,0 No predator
)‘p population collapse
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|dentifying harvesting policies Direct Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

Optimize function

i parameters, rather than
Next actual decision
harvest
effort
Zt+1

Borg MOEA - borgmoea.org/

>
Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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|dentified tradeoffs Parallel axis

Average objective performance
Preference —>

Net present value (NPV) Prey population deficit Longest duration Worst harvest instance Duration of predator
of low harvest population collapse
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|dentified tradeoffs Parallel axis
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|dentified tradeoffs Parallel axis

Given the sensitivity to uncertainty,
what do these tradeoffs look like if
we're wrong about the parameters?
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What do the tradeoffs look like in other SOWV!?

w

4+ 500 °
400
=
o
'(9’ . Assumed SOW
= | 300
S
@
41 ) A
5 200
43
Q)
-
e -
™ 100
0

1.00 0.75 0.50

Prey population deficit
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What do the tradeoffs look like in other SOWV!?
x

4+ 500 Significant prey deficits
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What do the tradeoffs look like in other SOWV!?
) ¢

1‘\~‘

A ; Distant SOW
500 : .
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attractor
g 400 :
5 : \
v Assumed SOW :
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What do the tradeoffs look like in other SOWV!?

+ s00

x
™

Distant SOW
with a global

attractor

400

300

DAIRY 1SIONN

System collapse

What happens in
other areas of the
parametric space!

~
= | g
5| 100 8 = §

R 1 e — 12000 %0
Y 4 R e - 8000 /<

Nearby SOW with : e —— e e &

deterministic 1.00 — SOW without a Wy

extinction . global attractor - Significant

performance

Prey population deficit reductions
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What happens in other areas of the parametric space!

2.00
1.75
1.50

1.25

Assumed SOW
“1.00 A

0.75

0.50

~

0.0 — o
02 —
04 — . 0.00

~
~

0.25

b 06 . >
All other parameters 08 —- . 10 12 14

fixed to default values 10 oo 02 04 06 08
m
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What happens in other areas of the parametric space!

@) Distant SOW
™\ with a global

attractor
: " 1.50
Nearby SOW with
deterministic ~ 135
extinction Assumed SOW
“1.00 A
@)
™\ SOW without a
O global attractor
. '®) |
0‘00 ; N ® \ Nearby SOW 0-25
0.40 6’ ~ \ with a global ;.
All other parameters b ” 08 —- . N > ) . attractor
- ' 0.8 v
fixed to default values 1.0 0.0 0o 04 06 -
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What happens in other areas of the parametric space!

How is performance

affected when found in
any of these SOW!?
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How is performance affected when in other SOW?

"o
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How is performance affected when in other SOW?

Could the cause for collapse be informed by the dynamics!?

dx b axy
_=bx(1_E)_ym+ahx_Z.x

dy  caxy
dt y™ + ahx

dy

Derived inequality for stability

a(hK)1™™M< (b —2)™

DMDU 2018]| ah986@cornell.edu 21 December 2018 31



How is performance affected when in other SOW?

- 100

- 80

)
tor collapse

Points crossing this surface
have no global attractor

Inequality for stability z
Some are simply unstable
a(hK)I™™m< (b —2)™
Some are described by
deterministic extinction |
9

All other parameters |y 96 .
fixed to default values ' : -0
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How is performance affected when in other SOW?

How should our preference
be informed to avoid failure!?

DMDU 2018| ah986@cornell.edu 21 December 2018
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Multi-Objective Robust Decision Making for fisheries

@ Quantify and analyze tradeoffs of managing a
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain
@ parameters and relationships on system
dynamics and tradeoffs

@ Explore formulations of harvesting policies to
avoid potential catastrophic consequences
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Robustness across criteria

Net Present Value (max)

(((C((Co

gs Total discounted profits > 1500

’

O Prey deficit (min)
Deficit from population capacity < 0.2

i
$

Duration of consecutive low harvest (min)
Duration of harvest below 5% of population <5

‘@ Worst harvest instance (max)
15t percentile of harvest > 50

® Avoid predator collapse
Duration of population collapse < 1

(0
il
i
((1
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Percentage of SOW where each criterion is met (%)

100 -

g
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<5
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Percentage of SOW where each criterion is met (%)

100 -
S
©
80 - .20 E
Q
®©
8
8
\ o
60 - -15 ®©
o
[T}
<
3
=
&
40 - 109
o)
©
»
S
o
[0}
o)
20 - -5 3
C
©
o
[0}
o
0 - -0
Net present Prey population deficit Longest duration Worst harvest instance Duration of predator
value (NPV) <0.2 of low harvest > 50 population collapse

<5 <1

DMDU 2018| ah986@cornell.edu 21 December 2018 37




Percentage of SOW where each criterion is met (%)

100 -

&n -

L

A\
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Percentage of SOW where each criterion is met (%)

100 -

Most robust
across criteria

How does our preference
affect the system!?

NS o O g
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How does our preference affect the system!?

) Assumed
SOW

Natural equilibrium

Predator abundance
da
9

20% of prey z/v \

pOpUIation - —-P‘- ' 2 L e ol : -g— — -q'— :
/0 s\oﬁ’rey Isoclineo 150 2000 2500
oS- - - -1 .

0 1000 2000 306€Y,@RUNAERNCE 6000 7000 8000
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How does our preference affect the system!?

Most robust

300 - ; / across criteria

N R s it C Assumed
250 - P e '

@ ; B SOW
c :
© 200- ; /
O :
C :
-cj .
¢ Most robust in NPV
§ :
8 100-
)
| .
ol )
50 - ~—__ Trajectory
endpoints \
O = : ] 1 1 ] 1
0 500 1000 1500 2000 2500
Prey abundance
I
0 0.2 0.4 0.6 0.8 1.0

Ratio of prey harvested
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How does our preference affect the system!?

Predator abundance

300 -

250 -

200 -

150 -

100 -

Nearby
SOW with
a global
attractor

Most robust in NPV
\ Most robust

/ across criteria

500 1000 150 000 2500
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O ml
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How does our preference affect the system!?

2007 SOW without
o a global

@ attractor

S 200 -

Lo
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3 |

O )
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0 2(50 460 6(|)0 860 10|00
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Key Points and Implications

Generalized predator-prey system with harvest of prey and
@ derived the isoclines, equilibria, and conditions for stability

Significant impacts of deep uncertainty; distinct basins of
attraction can be present and shift even with marginal
changes

a result of human preference and action

Robustness through compromise as a driver for harvest can
help navigate deep uncertainties in parameters and

@ Significant differences in system dynamics and equilibria as
relationships
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Questions!?
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Appendix
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Regrets
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Regrets

Significant losses in prey
and predator populations
as a result of being

uncertain about SOW Distant SOW with

parameters a global attractor
4905.11 .03 ) 185.35 -
I &
Solutions , i;
optimized to AN S
this SOW g e Lo 5
o

’ Nearby SOW
Solutions from

- . _ with a global
assumed SOW attractor
re-evaluated in

this SOW

SOW without a
global attractor
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Collapse in freshwater fisheries

Great Slave Lake (Canada): Trout
collapse due to
overexploitation

— TO1EI

e Charal
Carpa
= = =~ Tiiapia

— Bwlg
00 - —— Pascado blanco
-~ - - Popoche

Volga River (Russia): Nelma,
beluga, herring collapse due to
dam construction (spawning ”
ground loss) and illegal fishing

Landings in Thousands of Matrie Tons

Lake Chapala (Mexico): Bagre,
Popoche, Pescado blanco
collapse due to overfishing and = =
habitat loss from agricultural e ]

~activities YA iosnyFemerts

o
)

Landings in Metric Tons
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|dentifying harvesting policies Direct Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

Gaussian radial basis functions (RBFs)

= < (D)) -
Next Zt+1:zwi exp —z< ' )
harvest / =1 | =1
effort |

Zt+1

> is the number of RBFs, in this case n = 2

Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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|dentifying harvesting policies

Direct

Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

Next
harvest
effort

Zt+1

/

>
Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

R
Zty1 = E Wi
i=1 I

[ m
exp —z

j=1

((It)] — G, L>2

Weight of the ith RBF
Formulated to be positive and sum to 1

R

E Wi =
=1

1
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|dentifying harvesting policies Direct Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

Next Zt+1 =
harvest /
effort

Zt+1

IR
=

. -exp i <(It)] )

j=1

is the number of policy inputs, in
this case current prey (x;)

>
Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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|dentifying harvesting policies Direct Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

A _
R m ) 2
(It)] - C]l
Next Zt+1 = zWi exp | — pZ 4
harvest / i=1 _ j=1 i
effort

Zt+1 . ]
Centers and radii of the ith RBF

>
Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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|dentifying harvesting policies Direct Policy Search

Direct Policy Search:

Optimize a policy describing z;,4 as a function of prey
abundance, x;

A i
R m . 2
(1)) — ¢
Next Zty1 = zwi exp _z b2,
harvest / i=1 _ j=1 Ji
effort

Zt+1 .
Minimize F(z) = (—01,0,,03,—0,)

> Z = (21,29, ..o, Z7)
Current prey abundance x;

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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