
DMDU 2018| ah986@cornell.edu 21 December 2018

Avoiding fisheries collapse: Can robustness 

frameworks capture and navigate 

uncertain harvest trade-offs?

Antonia Hadjimichael
Patrick Reed
Julianne Quinn

DMDU 2018
ah986@cornell.eduBarracuda swimming  (iStock)



DMDU 2018| ah986@cornell.edu 221 December 2018

Multi-Objective Robust Decision Making for fisheries

Quantify and analyze tradeoffs of managing a 
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain 
parameters and relationships on system 
dynamics and tradeoffs

Explore formulations of harvesting policies to 
avoid potential catastrophic consequences
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2

3
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Northatlantic cod fishery collapse 

Overfishing
Imperfect understanding 
of the ocean ecosystem

Ban in 1992
35,000 jobs lost

(Robert E. Holloway 
Public Archives Canada)



DMDU 2018| ah986@cornell.edu 421 December 2018

Northern Benguela ecosystem

Combination of overfishing and 
changing environmental conditions

Cury and Shannon 
(2004); Prog. Oceanogr. 

Ander M. de Lecea

Halifax Island 1930s

Eberlanz Museum

Halifax Island 2004

Lüderitz and J. Kemper
Collapse of predator populations

Imprudent human action and 

poor understanding of system 

interactions can have 

catastrophic consequences!
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Modeling predator-prey systems

𝑏: prey growth rate

𝑑: predator death rate

𝑐: rate with which consumed prey is converted to predator

𝑎: rate with which prey is killed by a predator per unit of time

Lotka-Volterra equations

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑎𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑐𝑎𝑥𝑦 − 𝑑𝑦

𝑥: prey

𝑦: predator

The classic system
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𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑎𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑐𝑎𝑥𝑦 − 𝑑𝑦

Modeling predator-prey systems

Exponential growth in the 
absence of a predator

Replaced with:
Density-dependent function (logistic model)
K: prey carrying capacity given its environmental conditions

𝑓 𝑥 = 𝑏𝑥 1 −
𝑥

𝐾

Prey growth
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𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑎𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑐𝑎𝑥𝑦 − 𝑑𝑦

Modeling predator-prey systems

Trophic function 

Most important and debated element 

Replaced with:
Holling’s generalized functional response
h is the handling time Holling (1959); Can. Entomol.

𝑔 𝑥 =
𝑎𝑥

1 + 𝑎ℎ𝑥

Trophic function
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𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) − 𝑔(𝑥)𝑦

𝑑𝑦

𝑑𝑡
= 𝑐𝑔(𝑥)𝑦 − 𝑑𝑦

Modeling predator-prey systems Trophic function

𝑔 𝑥 =
𝑎𝑥

1 + 𝑎ℎ𝑥

Independent of 
predator density

Arditi & Ginzburg:

Ratio-dependent trophic function

Available prey shared among predators

Note: a is defined as the rate with which prey is killed by a predator per unit of time 
(1/(mass∙time)), α is defined as the rate at which the prey is available to the predator (1/time). 

Arditi and Ginzburg (1989); J. Theor. Biol. 

𝑔
𝑥

𝑦
=

𝛼
𝑥
𝑦

1 + 𝛼
𝑥
𝑦

=
𝛼𝑥

𝑦 + 𝛼ℎ𝑥
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Modeling predator-prey systems

Arditi & Ginzburg (1989); J. Theor. Biol.

Ruxton & Gurney (1992); Oikos Arditi et al. (1992); Oikos

Abrams (1994); Ecology

Diehl et al. (1993); Am. Nat.

Sarnelle (1994); Ecology

Akcakaya et al. (1995); Ecology

Trophic function

“This idea would set predator-prey theory back by decades”
- Abrams (1994)

Abrams & Ginzburg (2000); Trends Ecol. Evol.
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Modeling predator-prey systems

Lotka-Volterra & Arditi-Ginzurg models extremes of a spectrum of predator dependence

𝑚: predator interference parameter, on a sliding scale of 0 to 1

Special case of 
no sharing

Special case of 
perfect sharing𝑔 𝑥 ← 𝑔 𝑥, 𝑦 → 𝑔

𝑥

𝑦

𝑔 𝑥 =
𝑎𝑥

1 + 𝑎ℎ𝑥
← 𝑔

𝑥

𝑦𝑚
=

𝛼𝑥

𝑦𝑚 + 𝛼ℎ𝑥
→ 𝑔

𝑥

𝑦
=

𝛼𝑥

𝑦 + 𝛼ℎ𝑥

What does this uncertainty in 

interference imply for the system?
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System dynamics Classic ratio-dependent model

𝑑𝑥

𝑑𝑡
= 0

𝑑𝑦

𝑑𝑡
= 0

Equilibrium
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System dynamics Classic ratio-dependent model

Stable equilibrium Unstable equilibrium

Equilibrium is the global attractor Limit cycles are the global attractor
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System dynamics Predator-dependent model

Stable equilibrium; also 
the global attractor

Unstable equilibrium; limit 
cycles the global attractor

Unstable equilibrium; 
deterministic extinction

Stable equilibrium; 
no global attractor

Even for unharvested systems 

uncertainty implies significant 

differences in dynamics!
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Harvesting the system

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 1 −

𝑥

𝐾
−

𝛼𝑥𝑦

𝑦𝑚 + 𝛼ℎ𝑥
− 𝑧 ∙ 𝑥

𝑑𝑦

𝑑𝑡
=

𝑐𝛼𝑥𝑦

𝑦𝑚 + 𝛼ℎ𝑥
− 𝑑𝑦

Harvesting effortHarvested fish

Continuous-time model



DMDU 2018| ah986@cornell.edu 1521 December 2018

Harvesting the system

𝑥𝑡+1 = 𝑥𝑡 + 𝑏𝑥𝑡 1 −
𝑥𝑡
𝐾

−
𝛼𝑥𝑡𝑦𝑡

𝑦𝑡
𝑚 + 𝛼ℎ𝑥𝑡

− 𝑧𝑡 ∙ 𝑥𝑡 − 𝜀𝑥

𝑦𝑡+1 = 𝑦𝑡 +
𝑐𝛼𝑥𝑡𝑦𝑡

𝑦𝑡
𝑚+𝛼ℎ𝑥𝑡

− 𝑑𝑦𝑡 − 𝜀𝑦

Discrete-time model

Environmental 
stochasticity
𝜀𝑖~𝐿.𝑁(0, 𝜎𝑖)

Set of T decisions 
described by a policy

Parameter α b c d h K m σx σy

Value 0.005 0.5 0.5 0.1 0.1 2000 0.7 0.004 0.004
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Multi-Objective Robust Decision Making for fisheries

Quantify and analyze tradeoffs of managing a 
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain 
parameters and relationships on system 
dynamics and tradeoffs

Explore formulations of harvesting policies to 
avoid potential catastrophic consequences

1

2

3
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Four objectives and a constraint

Net Present Value 
Total discounted profits

Prey deficit 
Deficit from 
population capacity

Consecutive low 
harvest duration 

Harvest below 5% 
of population

Worst harvest instance
1st percentile of harvest

No predator 
population collapse

Averaged over 100 realizations of well-characterized environmental stochasticity
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Optimize function 
parameters, rather than 
actual decision

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

Borg MOEA - borgmoea.org/

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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Identified tradeoffs Parallel axis
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Identified tradeoffs Parallel axis
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Identified tradeoffs Parallel axis

Given the sensitivity to uncertainty, 

what do these tradeoffs look like if 

we’re wrong about the parameters?
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What do the tradeoffs look like in other SOW?

Assumed SOW

W
o

rst h
arvest in

stan
ce

Prey population deficit
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What do the tradeoffs look like in other SOW?

Assumed SOW
Nearby SOW 
with a global 
attractor

Significant prey deficits

W
o

rst h
arvest in

stan
ce

Prey population deficit
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What do the tradeoffs look like in other SOW?

Assumed SOW

Distant SOW 
with a global 
attractor

Tradeoff set 
changes shape

Nearby SOW 
with a global 
attractor

W
o

rst h
arvest in

stan
ce

Prey population deficit
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What do the tradeoffs look like in other SOW?

Assumed SOW

SOW without a 
global attractor

Nearby SOW 
with a global 
attractor

Distant SOW 
with a global 
attractor

W
o

rst h
arvest in

stan
ce

Prey population deficit

System collapse

Significant 
performance 
reductions

Nearby SOW with 
deterministic 
extinction

These are losses in 

just 4 other possible 

SOW

What happens in 

other areas of the 

parametric space?
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Assumed SOW

What happens in other areas of the parametric space?

All other parameters 
fixed to default values
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Assumed SOW

Nearby SOW with 
deterministic 
extinction

What happens in other areas of the parametric space?

All other parameters 
fixed to default values

Nearby SOW 
with a global 
attractor

Distant SOW 
with a global 
attractor

SOW without a 
global attractor
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What happens in other areas of the parametric space?

Latin Hypercube Sampling: 4,000 combinations

Parameter Min. Default Max.

α 0.002 0.005 2

b 0.005 0.5 1

c 0.2 0.5 1

d 0.05 0.1 0.2

h 0.001 0.1 1

K 100 2000 5000

m 0.1 0.7 1.5

σx 0.001 0.004 1

σy 0.001 0.004 1

How is performance 

affected when found in 

any of these SOW?
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How is performance affected when in other SOW?

All other parameters 
fixed to default values
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How is performance affected when in other SOW?

All other parameters 
fixed to default values

What causes all 

solutions in this 

space to fail?

What causes all 

solutions in this 

space to fail?

Could the cause for 

collapse be informed 

by the dynamics?
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How is performance affected when in other SOW?

Could the cause for collapse be informed by the dynamics?

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 1 −

𝑥

𝐾
−

𝛼𝑥𝑦

𝑦𝑚 + 𝛼ℎ𝑥
− 𝑧 ∙ 𝑥

𝑑𝑦

𝑑𝑡
=

𝑐𝛼𝑥𝑦

𝑦𝑚 + 𝛼ℎ𝑥
− 𝑑𝑦

Derived inequality for stability

𝛼(ℎ𝐾)1−𝑚< 𝑏 − 𝑧 𝑚
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How is performance affected when in other SOW?

All other parameters 
fixed to default values

Inequality for stability

𝛼(ℎ𝐾)1−𝑚< 𝑏 − 𝑧 𝑚

Points crossing this surface 
have no global attractor

Some are simply unstable

Some are described by 
deterministic extinction
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How is performance affected when in other SOW?

All other parameters 
fixed to default values

SOW where our 
preference matters!How should our preference 

be informed to avoid failure?
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Multi-Objective Robust Decision Making for fisheries

Quantify and analyze tradeoffs of managing a 
simple fishery with a predator-prey relationship

Assess the impacts of deeply uncertain 
parameters and relationships on system 
dynamics and tradeoffs

Explore formulations of harvesting policies to 
avoid potential catastrophic consequences

1

2

3
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Robustness across criteria

Net Present Value (max)

Total discounted profits > 1500

Prey deficit (min)
Deficit from population capacity < 0.2

Duration of consecutive low harvest (min)
Duration of harvest below 5% of population < 5

Worst harvest instance (max)
1st percentile of harvest > 50

Avoid predator collapse
Duration of population collapse < 1
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Percentage of SOW where each criterion is met (%)
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Percentage of SOW where each criterion is met (%)
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Percentage of SOW where each criterion is met (%)

Most robust in NPV
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Percentage of SOW where each criterion is met (%)

Most robust 
across criteria

How does our preference 

affect the system?
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How does our preference affect the system?

Natural equilibrium

20% of prey 
population

Assumed 
SOW
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How does our preference affect the system?

Most robust in NPV

Most robust 
across criteria

Trajectory 
endpoints

Assumed 
SOW
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How does our preference affect the system?

Most robust in NPV
Most robust 
across criteria

Trajectory 
endpoints

Nearby 
SOW with 
a global 
attractor
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How does our preference affect the system?

Most robust in NPV

Most robust 
across criteria

Trajectory 
endpoints

SOW without 
a global 
attractor
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Key Points and Implications

1

2

3

4

Generalized predator-prey system with harvest of prey and 
derived the isoclines, equilibria, and conditions for stability

Significant impacts of deep uncertainty; distinct basins of 
attraction can be present and shift even with marginal 
changes

Significant differences in system dynamics and equilibria as 
a result of human preference and action

Robustness through compromise as a driver for harvest can 
help navigate deep uncertainties in parameters and 
relationships
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Questions?
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Appendix
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Regrets

Nearby SOW 
with a global 
attractor

Distant SOW with 
a global attractor

SOW without a 
global attractor
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Regrets

Significant losses in prey 
and predator populations 
as a result of being 
uncertain about SOW 
parameters

Nearby SOW 
with a global 
attractor

Distant SOW with 
a global attractor

SOW without a 
global attractor

Solutions from 
assumed SOW 
re-evaluated in 

this SOW

Solutions 
optimized to 
this SOW
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Collapse in freshwater fisheries

Great Slave Lake (Canada): Trout
collapse due to 
overexploitation

Volga River (Russia): Nelma, 
beluga, herring collapse due to 
dam construction (spawning 
ground loss) and illegal fishing

Lake Chapala (Mexico): Bagre, 
Popoche, Pescado blanco
collapse due to overfishing and 
habitat loss from agricultural 
activities Lyons et al. (1998); Fisheries
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

𝑧𝑡+1 =

𝑖=1

𝑅

𝑤𝑖 𝑒𝑥𝑝 −

𝑗=1

𝑚
𝐼𝑡 𝑗 − 𝑐𝑗,𝑖

𝑏𝑗,𝑖
2

2

is the number of RBFs, in this case 𝑛 = 2

Gaussian radial basis functions (RBFs)

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

𝑧𝑡+1 =

𝑖=1

𝑅

𝑤𝑖 𝑒𝑥𝑝 −

𝑗=1

𝑚
𝐼𝑡 𝑗 − 𝑐𝑗,𝑖

𝑏𝑗,𝑖
2

2

Weight of the ith RBF
Formulated to be positive and sum to 1

𝑤𝑖 > 0 ∀𝑖



𝑖=1

𝑅

𝑤𝑖 = 1

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

𝑧𝑡+1 =

𝑖=1

𝑅

𝑤𝑖 𝑒𝑥𝑝 −

𝑗=1

𝑚
𝐼𝑡 𝑗 − 𝑐𝑗,𝑖

𝑏𝑗,𝑖
2

2

is the number of policy inputs, in 
this case current prey (𝑥𝑡)

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

𝑧𝑡+1 =

𝑖=1

𝑅

𝑤𝑖 𝑒𝑥𝑝 −

𝑗=1

𝑚
𝐼𝑡 𝑗 − 𝑐𝑗,𝑖

𝑏𝑗,𝑖
2

2

Centers and radii of the ith RBF

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570
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Identifying harvesting policies

Direct Policy Search:

Optimize a policy describing 𝑧𝑡+1 as a function of prey 
abundance, 𝑥𝑡

Direct Policy Search

Next 
harvest 

effort 
𝑧𝑡+1

Current prey abundance 𝑥𝑡

Giuliani et al. (2016); https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

𝑧𝑡+1 =

𝑖=1

𝑅

𝑤𝑖 𝑒𝑥𝑝 −

𝑗=1

𝑚
𝐼𝑡 𝑗 − 𝑐𝑗,𝑖

𝑏𝑗,𝑖
2

2

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 𝑧 = (−𝑶𝟏, 𝑶𝟐, 𝑶𝟑, −𝑶𝟒)

𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑇)

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000570

