

Travel Model Improvement Program Exploratory Modeling and Analysis Tool (TMIP-EMAT)

Understanding Forecasting Risk in Transportation Forecasting

Martin Milkovits and Jeffrey Newman, Cambridge Systematics, Inc. Sarah Sun, Federal Highway Administration

Deep Uncertainty in Transportation Planning

 Historically, most transportation demand forecasts have ignored uncertainty, or examined it in a cursory manner ... although travel behaviors are complex they

were relatively stable and predictable

- Disruptive technologies can and are changing transportation:
 - Transportation Network Companies (Uber, Lyft, etc.) have already decimated traditional taxis
 - Self-Driving Cars are on the horizon

https://www.reddit.com/r/dataisbeautiful/comments/84df5z/ridehailing_apps_are_now_65_bigger_than_taxis_in,

Demand Modeling in Transportation Planning

- In the United States, the federal government mandates MPO's must have and maintain a travel demand model (TDM)
- There are a few different basic types of TDM, but nearly every MPO has some level of customization of local details
- These models are used for prediction, probably inappropriately

very few resources are devoted to validating TDMs after-the-fact

Our Goal: Nudge the Process toward DMDU

- Provide additional tools to transportation planners and modelers to start thinking about uncertainty and robustness
- Tools need to be **ready-to-use** and **easy** for a transportation planner to work with
- We provide examples and prototypes within the transportation planning context to guide users
- Don't reinvent the wheel, just attach the wheel to our existing apparatus

An Obstacle: Computational Speed

- Travel demand forecasting models are generally slow: it is typical to take hours to days to generate a single scenario forecast
- Solution: The development and use of meta-models can be automated and nearly transparent to the modeling end-user.

A Solution: Automatic Meta-Model Development

- Although every travel forecasting model is unique, most of these models are similar.
- Gaussian Process Regression metamodels, using an anisotropic RBF kernel, have been seen to provide a good fit across a number of travel forecasting applications and performance measures, even without careful tuning of hyper-parameters.

Many Steps can be Automated:

- Experimental Design
- Core Model runs
- Persistent Storage of Core Model Results
- Meta-Model Fitting on Experiments

Prototype Demonstration Model

- To demonstrate the capabilities of EMA for transportation planning, the TMIP-EMAT tool has been connected to the Buffalo-Niagara regional forecasting model
- The TDM is a trip-based model that requires just a couple of hours to complete a model run

Exploration and Visualization

 The meta-model can be used to generate visualizations for both "shallow" and "deep" uncertainty

Build-No Build Analysis

• An easy-to-digest visualization that shows the impact of one risk factor on one performance measure, both with and without a particular policy or investment

Robust Search and other EMA Methods

- By connecting the meta-model to the EMA Workbench, a broad suite of EMA tools is made available
- We will provide walk-throughs and examples to step through the process within a transportation-specific context

Managing Expectations

- TMIP-EMAT can only be used to examine questions for which the underlying model has relevant sensitivities.
 - e.g., you can't study the impact of taxes on flying cars if flying cars are not present in the underlying simulation model
- We don't magically make the underlying model more accurate
- It will still be a fair bit of work for both the computers and the humans to use these tools

Martin Milkovits mmilkovits@camsys.com Jeffrey Newman jnewman@camsys.com Sarah Sun sarah.sun@dot.gov